Tyrosine for the Treatment of Depression

BY ALAN J. GELENBERG, M.D., JOANNE DOLLER WOJCIK, R.N., M.S., JOHN H. GROWDON, M.D., ALAN F. SVED, AND RICHARD J. WURTMAN, M.D.

The catecholamine hypothesis of affective illness suggests that depression may reflect a deficiency of norepinephrine (NE) transmission at specific brain loci (1). Consistent with this model, two types of antidepressant drugs currently in use—tricyclics and monoamine oxidase inhibitors—appear to enhance noradrenergic transmission. Tyrosine is the physiological precursor for catecholamine synthesis, and its administration can increase the rates at which brain neurons synthesize both dopamine and norepinephrine (2-5). If a similar sequence occurs in humans, tyrosine administration might be an effective treatment for disorders, such as depression, that may respond to increased central noradrenergic tone. We will describe the results of a double-blind, placebo-controlled, crossover trial of tyrosine in a depressed woman.

Case Report

Ms. A, a 30-year-old woman, had suffered from chronic and recurrent depressions for several years and was diagnosed as having primary depression, unipolar type. As part of a research study, she was treated with an experimental antidepressant, amoxapine; the drug was discontinued after 10 days because she was agitated and tremulous. We discussed the treatment alternatives of a standard antidepressant or a trial of tyrosine with her, and she gave us informed consent for the latter. We then administered 100 mg/kg per day of L-tyrosine by mouth in 3 daily doses for 2 weeks, an identically appearing placebo at the same schedule for 18 days, and finally tyrosine for an additional 5 weeks.

A psychiatrist (A.J.G.), who was “blind” to the therapy, rated Ms. A weekly on the Hamilton Depression Rating Scale and the Clinical Global Impressions (CGI). Ms. A, who was also blind to the treatment, rated herself weekly on the Zung Self-Rating Depression Scale. Venous blood samples were collected throughout the tyrosine and placebo treatments for measurement of tyrosine concentrations.

| TABLE 1
Effect of Tyrosine on Depression Scores of One Patient |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton Scale</td>
</tr>
<tr>
<td>Pretreatment</td>
</tr>
<tr>
<td>First tyrosine (6 g/day for 14 days)</td>
</tr>
<tr>
<td>Placebo (18 days)</td>
</tr>
<tr>
<td>Second tyrosine (6 g/day for 74 days)</td>
</tr>
</tbody>
</table>

Ms. A’s depression improved markedly after 2 weeks of tyrosine therapy. She said she felt better than she had in years and showed striking improvement in mood, self-esteem, sleep, energy level, anxiety, and somatic complaints. Her CGI went from “moderately ill” to “not ill at all.” Within 1 week of placebo substitution, her depressive symptoms began to return, and by the end of the placebo period her depressive indices were slightly worse than pretreatment levels.

When we reinstituted tyrosine therapy her depression was again completely alleviated. Hamilton and Zung ratings during the pretreatment, tyrosine, and placebo periods are presented in table 1. No adverse effects were noted during either tyrosine or placebo therapy.

Plasma tyrosine concentrations rose within 1 hour after we administered a single dose of L-tyrosine and were elevated throughout tyrosine ingestion. Plasma levels in samples drawn 2 hours after a tyrosine dose ranged between 26.8 and 32.8 μg/ml, with a mean (±SEM) of 29.8±2.4. Plasma levels in samples drawn at similar times after placebo was taken were 14.2±0.8 μg/ml, p<.001.

Discussion

Oral tyrosine administration increased plasma tyrosine levels in Ms. A, as it has in normal subjects without psychiatric disorders (6). In addition, symptoms of depression decreased dramatically during tyrosine administration and recurred when placebo was substituted. We observed no unwanted effects with tyrosine ingestion.

There are a few reports that tyrosine metabolism may be abnormal in depressed patients. Kishimoto and Hama (7) have reported that plasma tyrosine levels were significantly lower in depressed patients than in controls and that plasma tyrosine levels rose when the patients recovered from depression. They made no attempt to alter blood levels by oral tyrosine administration or by dietary manipulations. Ms. A’s plasma tyrosine levels at baseline and during placebo therapy...
were normal, and these levels increased during tyro-
sine ingestion to the same degree as the increases pre-
viously observed in normal subjects. Disturbances
have also been reported in the blood-brain-barrier
transport of tyrosine and tryptophan in patients suf-
f ering from manic-depressive illness (8, 9). It is con-
ceivable that Ms. A required higher than normal
plasma tyrosine concentrations to achieve enough
brain tyrosine to provide sufficient brain tyrosine lev-
els for adequate catecholamine biosynthesis.

Whether tyrosine therapy will be effective in allevi-
ating depression in significant numbers of patients
remains to be seen, and if the therapy is effective, it is
not certain whether there are clinical or biochemical
criteria that may predict response. If tyrosine is dem-
onstrated to be effective and it actually has few un-
wanted effects, it might become an attractive alterna-
tive to the antidepressants currently available. We are
also studying the use of tyrosine in the therapy of other
 disorders associated with deficiencies in cate-
cholamine release in the same manner that Growdon
and Wurtman (10) have studied the use of tryptophan
to increase brain serotonin levels and of choline and
lecithin to augment cerebral acetylcholine synthesis
and release.

REFERENCES
1. Schildkraut JJ: The catecholamine hypothesis of affective dis-
122:508–522, 1965
synthesis: controlled by brain tyrosine concentration. Science
185:183–184, 1974
3. Gibson C, Wurtman RJ: Physiological control of brain norepi-
nephrine synthesis by brain tyrosine concentration. Biochem
Pharmacol 26:1137–1142, 1977
4. Scally MC, Ulus I, Wurtman RJ: Brain tyrosine level controls
striatal dopamine synthesis in haloperidol-treated rats. J Neural
Transm 41:1–6, 1977
5. Carlsson A, Lindqvist M: Dependence of 5-HT and cate-
cholamine synthesis of concentrations of precursor amino acids
in rat brain. Naunyns Schmiedebergs Arch Pharmacol 303:157–
164, 1978
plasma tyrosine after a single oral dose of L-tyrosine. Life Sci
25:265–272, 1979
7. Kishimoto H, Hama Y: The level and diurnal rhythm of plasma
tryptophan and tyrosine in manic-depressive patients. Yokohama
Medical Bulletin 27:89–97, 1976
8. Tissot R, Castellanos G, Gaillard JM, et al: Uptake of trypto-
phan and tyrosine in some cases of manic depressive psychosis
and schizophrenia. Neuropsychobiology 4:65–73, 1978
9. Gaillard JM, Tissot R: Blood-brain movements of tryptophan
and tyrosine in manic-depressive illness and schizophrenia. J
Neural Transm, Supplement 15, 1979, pp 189–196
10. Growdon JH, Wurtman RJ: Dietary influences on the synthesis

Dangerousness and the Right of a Psychotic Quadriplegic Patient to Refuse Treatment

BY RAY PARY, M.D., AND DANIELLE TURNS, M.D.

Clinicians face many complexities when deciding
whether or not involuntary treatment is indicated for a
psychotic individual with a severe physical handicap.
The literature on this subject is scarce; we found only
one report of a similar case (1).

Case Report

Mr. A, a 32-year-old quadriplegic veteran, was admitted to
the medical service of the Louisville Veterans Administra-
tion Medical Center with bleeding decubitus ulcers and a uri-
nary tract infection. While on the medical service, he was
uncooperative and demanding; he appeared to be hallucinat-
ing and expressed delusional beliefs. A psychiatric consul-
tation was obtained and Mr. A was transferred to our psychi-
atriac unit.

Before he was admitted to the hospital, Mr. A lived with a
caretaker and the caretaker’s family. The caretaker reported
that Mr. A’s behavior started changing 2 weeks before he
entered the hospital, and that Mr. A had told him that the
Holy Ghost, Martin Luther King, and John Kennedy had spoken to him.

Upon admission to the hospital, Mr. A’s mental status ex-
amination revealed auditory hallucinations, loose associa-
tions, and ideas of reference. He claimed that messages
about him were being broadcast over the television and ra-
dio, and he stated that God had personally informed him that
he would walk in the future. His sensorium was clear, his
orientation was complete, and his intellectual functioning
was normal. He denied having suicidal thoughts and in-
tentions but acknowledged smoking marijuana three times a
week in recent months. Physical examination revealed con-
siderable paralysis of his arms. He could not grasp objects,
but he was able to use his upper extremities to operate an
electric wheelchair. His legs were paralyzed, and he was to-
tally dependent on others for bodily care. His history and
clinical picture were not compatible with a drug-induced
psychosis. Our diagnosis of Mr. A was acute schizophrenic
episode and drug dependence (cannabis sativa).

Mr. A demanded to leave the hospital shortly after being

Received Oct. 4, 1979; revised Dec. 26, 1979; accepted Jan. 3,
1980.
From the Veterans Administration Medical Center, Louisville,
Ky., and the Department of Psychiatry and Behavioral Sciences,
University of Louisville School of Medicine, Louisville, Ky.
Address reprint requests to Dr. Pary, Veterans Administration
Medical Center, 800 Zorn Ave., Louisville, Ky. 40202.