material ranged in these samples from 20 to 194 mg, and when incubated with the enzyme, the range was 34 to 275 mg. This indicates that the percentage of total drug excreted apparently conjugated as the glucuronide remains essentially the same over a wide range of drug. When thioridazine is the administered drug, however, no glucuronide formation could be inferred because no additional chromogen was obtained after glucuronidase incubation. That thioridazine in the human is not conjugated to any appreciable extent is supported by our observation that when 35S-ring-labeled thioridazine is administered, less than 3 per cent of the metabolites in the urine are not extractable by chloroform. This is remarkably different from the results obtained with chlorpromazine administration, where over 50 per cent of the urinary metabolites are not extractable with the nonpolar solvent.

Neuropsychiatric Institute,
University of California; and
Neurobiochemistry Laboratory,
Veterans Administration Center,
Los Angeles, Calif., U.S.A.

REFERENCES

A sensitive and specific assay for the estimation of monoamine oxidase

(Received 27 May 1963; accepted 7 August 1963)

Monoamine oxidase (MAO) activity in tissue is usually measured by manometric or fluorimetric techniques. The former are laborious and require fairly large amounts of tissue; the latter, though more sensitive, still require milligram quantities of tissue and are subject to error because of potential
variation in endogenous levels of fluorescent material. We have developed a simple, sensitive, and specific assay for MAO, utilizing the measurement of deaminated 14C-metabolites of 14C-tryptamine. Sixty or more assays, each requiring as little as 5µg of tissue, can be performed in 3 hr.

Tissues are homogenized in chilled isotonic KCl, and 1–100 µl (10 µg–1 mg) are used for assays. 14C-Tryptamine (tryptamine-2-14C-hydrochloride, New England Nuclear Co., 13 mc/m mole) is dissolved in water and stored at -4°. In a typical assay, 25 µl enzyme preparation, 25 µl (6.25 µm mole) of 14C-tryptamine, and 250 µl 0.5 M phosphate buffer, pH 7.4, are mixed in a 15-ml glass-stopped centrifuge tube and incubated at 37° for 20 min. The reaction is stopped by the addition of 0.2 ml 2 N HCl, and the deaminated radioactive material is extracted into 6 ml toluene by shaking. After centrifugation, a 4-ml aliquot of the organic layer is transferred to a vial containing 10 ml phosphor [0.4 per cent 2,5-diphenyloxazole and 0.005 per cent 1,4-di(2,5-phenyloxazole) benzene in toluene], and counted for 1–5 min in a liquid scintillation spectrophotometer. A small amount of 14C-tryptamine (less than 0.1 per cent) is extracted by this procedure. A correction is made for this blank value (about 30–50 cpm) by incubating 14C-tryptamine with boiled enzyme.

The reaction was linear with time for at least 20 min and with enzyme concentration over a range of 5–1000 µg liver (Table 1). Duplicate determinations of the MAO activity of 250 µg of many liver specimens differed by less than 2 per cent.

Table 1. Enzymatic formation of 14C-indoleacetic acid from 14C-tryptamine

<table>
<thead>
<tr>
<th>Liver aliquot, (µg)</th>
<th>cpm</th>
<th>mMoles 14CIAA/mg liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15 ± 4</td>
<td>3.80</td>
</tr>
<tr>
<td>10</td>
<td>29 ± 4</td>
<td>3.60</td>
</tr>
<tr>
<td>30</td>
<td>80 ± 5</td>
<td>3.33</td>
</tr>
<tr>
<td>100</td>
<td>266 ± 9</td>
<td>3.38</td>
</tr>
<tr>
<td>250</td>
<td>742 ± 15</td>
<td>3.76</td>
</tr>
<tr>
<td>1,000</td>
<td>2,805 ± 195</td>
<td>3.57</td>
</tr>
<tr>
<td>3,000</td>
<td>4,170 ± 110</td>
<td>1.81</td>
</tr>
<tr>
<td>10,000</td>
<td>4,215 ± 40</td>
<td>0.54</td>
</tr>
</tbody>
</table>

* Enzyme preparation (25µl) was incubated with 6.25 mM moles 14C-tryptamine for 20 min at 37°. Data were corrected for blank values (32 cpm), obtained by incubating 14C-tryptamine with boiled enzyme. cpm are expressed as mean ± average deviation of duplicate samples.

The radioactive metabolite of 14C-tryptamine produced by incubation with rat heart or liver was identified as 14C-indoleacetic acid (IAA) by ascending paper chromatography, in confirmation of the findings of Love, et al. who used nonradioactive material. Indoleacetic acid was separated from tryptamine in a butanol:acetic acid:water (4:1:1) system, and from indoleacetaldehyde in an isopropyl alcohol:ammonia:water (8:1:1) system.

The assay was sufficiently sensitive to measure MAO activity in scrapings of human buccal mucosa. In this tissue, paper chromatography demonstrated that both acid and aldehyde were generated, indicating that in some subjects this tissue lacked an excess of aldehyde dehydrogenase. When such assay mixtures were incubated with a preparation of aldehyde dehydrogenase from guinea pig kidney and appropriate cofactors, the chromatographic yield of indoleacetic acid was increased but the number of counts extracted into toluene was unchanged, indicating that indoleacetaldehyde has solubility characteristics similar to indoleacetic acid in an acid:toluene system. It is concluded that this assay can be used whether or not aldehyde dehydrogenase is present.

The enzyme specificity of this assay was investigated by determining the effect on hepatic MAO activity of pretreatment in vivo or preincubation in vitro with tranylcypromine (SKF 385). This compound is a potent inhibitor of MAO at doses that have no effect on diamine oxidase. Tranylcypromine both in vivo and in vitro produced a 97 to 99 per cent decrease in enzyme activity.

Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Md., U.S.A.

Richard J. Wurtman

Julius Axelrod